

Short Research Article

Aryl fluoroalkanesulfonate chemistry. A new approach to labelled arene elaboration †

JOHN M. HERBERT*, ANDREW D. KOHLER, FRANCK LE STRAT and DAVID WHITEHEAD

Isotope Chemistry and Metabolite Synthesis Department, sanofi-aventis, Willowburn Ave., Alnwick, Northumberland NE66 2JH, UK

Received 21 July 2006; Revised 7 November 2006; Accepted 21 November 2006

Keywords: aromatic substitution; halogenation; selective catalysis; aryl triflates; aryl nonaflates

Introduction

Labelled phenyl perfluoroalkanesulfonates are readily available from labelled phenol¹, and in this report, are used to construct multiply substituted labelled arenes.

Results and discussion

Nitration of 1 to give 2 was reproducible², and 4-halogenated products **3a** and **4a** were prepared by

halogenation with an *N*-halosuccinimide in sulfuric acid (Scheme 1; Table 1), in an adaptation of a reported procedure³. Attempts to carry out Friedel-Crafts acylation of $\mathbf{1}$ were unsuccessful.

Further substitution of **2** or **4** gave 1,2,4-trisubstituted arenes in good yields (Scheme 2). Halophenyl triflates **3** were further elaborated *via* the Grignard reagent formed under Knochel conditions⁴ (Scheme 2; Table 2) and it was possible to displace either bromide or triflate selectively from **4a** using previously reported methods (Scheme 2; Table 3)^{5–7}.

Scheme 1

R

Electro-

time (h) (%) CF_3 90, 92 HNO₃ H_2SO_4 6 CF₃COOH or H₂SO₄ CF_3 NIS 4 - 689-99 CF_3 NBS H_2SO_4 6 81,94 HNO₃ C_4F_9 H_2SO_4 4 90 CF₃COOH or H₂SO₄ C_4F_9 NIS 4-6 86-93 NBS H_2SO_4 2036 C_4F_9

Acid

Table 1 Electrophilic substitution reactions of 1a and 1b

Reaction

Yield

^{*}Correspondence to: John M. Herbert, Isotope Chemistry and Metabolite Synthesis Department, sanofi-aventis, Willowburn Ave., Alnwick, Northumberland NE66 2JH, UK. E-mail: john.herbert@sanofi-aventis.com

E-mail: john.nerbert@sanoii-aventis.com

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

Scheme 2

Table 2 Reaction of Grignard reagents derived from **3** with electrophiles

R	E ⁺ (E)	Yield (%)	R	E ⁺ (E)	Yield (%)
CF_3	(EtCO) ₂ O (COEt)	28	CF_3	NCCOOEt (COOEt)	68
CF_3	1-Benzyl-4-piperidinone	29	CF_3	Ms_2O (SO ₂ Me)	35
CF_3	Benzaldehyde (CH(OH)Ph)	99	CF_3	C_2Cl_6 (Cl)	85
CF_3	MeSO ₂ Cl (Cl)	75	C_4F_9	NCCOOEt (COOEt)	60

Table 3 Metal-catalysed displacement reactions of 4a

Nu	Catalyst	5 , 6 yields	Nu [Y]	Catalyst	5 , 6 yields
Zn(CN) ₂	Pd(dppf) ₂ Cl ₂	0, 100%	[(RO) ₂ B] ₂ ^a [B(OR) ₂]	Pd(dppf) ₂ Cl ₂	92%, 0
$Zn(CN)_2$	$Pd(OAc)_2$, AsPh ₃	87%, 0	$[(RO)_2B]_2^{a}[B(OR)_2]$	$Pd(OAc)_2$, AsPh ₃	1%, 91%
Me ₂ Zn	$Pd(dppe)_2Cl_2$	72%, 25%	[(RO) ₂ B] ₂ ^a [B(OR) ₂]	Ni(dppf)Cl ₂	50%
Me ₂ Zn	$Pd(OAc)_2$, $AsPh_3$	100%, 0	Et ₃ SiH[H]	Pd(OAc) ₂ , dppp	55%

^aBis(pinacol)diborane.

REFERENCES

- Frantz DE, Weaver DG, Carey JP, Kress MH, Dolling UH. Org Lett 2002; 4: 4717; Rottländer M, Knochel P. J Org Chem 1998; 63: 203.
- 2. Herbert JM. Tetrahedron Lett 2004; 45: 815.
- Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. *Angew Chem* 2003; **42**: 4302.
- Maligres PE, Waters MS, Fleitz F, Askin D. Tetrahedron Lett 1999; 40: 8193.
- Olah GA, Wang Q, Sandford G, Surya Prakash GK. J Org Chem 1993; 58: 3194.
- 6. Stang PJ, Anderson AG. J Org Chem 1976; **41**: 781.
- 7. Thompson ALS, Kabalka GW, Akula MR, Huffman JW. *Synthesis* 2005; 547.